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Abstract. We show that, in the presence of the steep temperature gradients characteristic of EUV models 
of the solar transition region, the electron and proton velocity distribution functions are non-Maxwellian 
and are characterized by high energy tails. We estimate the magnitude of these tails for a model of the 
transition region and compute the heat flux to be a maximum of 30% greater than predicted by 
collision-dominated theory. 

1. Introduction 

Existing models of the solar transition region, derived f rom observations of the solar 

spectrum in the extreme ultraviolet (EUV), make use of the assumption that  the 
electron velocity distribution functions are nearly Maxwellian to compute excitation, 

ionization, and recombinat ion rates. However ,  these models are characterized by 
steep tempera ture  gradients which, as we shall show, lead to distribution functions 
for electrons and protons which are non-Maxwellian in contradiction with the initial 

assumption. 
Depar tures  f rom the Maxwellian distribution can be substantial (depending on the 

steepness of the tempera ture  gradient) and take the form of high energy tails for 
those particles which are propagating down the tempera ture  gradient. This leads to 

heat fluxes differing f rom those computed f rom collision-dominated theory and 
ionization, excitation and recombination rates differing f rom those computed 

assuming Maxwellian distribution functions for the electrons. 
In this paper,  we discuss the kinetic effects which give rise to high energy tails in the 

presence of steep gradients and estimate the magnitude of these effects for Dupree ' s  
(1972) E U V  model of the transition region. We then compute various moments  of 
the electron distribution functions and compare  these to results obtained from 
collision dominated theory. A subsequent paper  will compare  the ionization equilib- 

rium populations for ions of carbon, nitrogen, and oxygen, computed with the 

non-Maxwellian distribution functions obtained in this paper  to those computed wit h 
the usual assumption of a Maxwellian distribution function for the electrons. 
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2. Non-Maxwellian Electron and Proton Distribution Functions 

A. D E P A R T U R E S  F R O M  M A X W E L L I A N  

The collision dominated kinetic theory of non-uniform gases was developed by 
Chapman and Enskog in the 1920's and is expounded by Chapman and Cowling in 
'The Mathematical Theory of Non-Uniform Gases' (1970). The Chapman-Enskog 
theory assumes that the distribution function for a given species, a, can be written in 
general as 

(2) /~(x, v, t )= /~) (x ,  v, t )+/~)(x ,  v, t)+f~ (x, v, t )+-  �9 �9 (1) 

where each of the f~.~) represents a successive approximation to the total distribution 
function and each satisfies the condition 

I r I -~__z__- 
f~,-a~ << 1, for allx, v, and t. 

The full Boltzmann equation is then solved with what amounts to a perturbation 
scheme. The zeroth order solution, f~o), is a Maxwellian distribution function 
characterized by a temperature, T, density, n, and mean flow, v0. 

Spitzer and Harm (1953) computed the first order electron distribution function, 
f(a~ in the presence of a temperature gradient for a gas of mean ionic charge 2 e , 

defined by 

2 =" 2 niZ~/ne (2) 
i 

with the sum taken over all positive ions. In Spitzer and Harm's notation, the total 
electron distribution function, to first order, is given by 

fe = f(e0) ( l  + / z D e ( u ,  z ) ) ,  (3)  

where u is the electron speed normalized to the thermal speed and/z is the cosine of 
the polar angle in velocity space. 

In Table II of Spitzer and Harm the quantity 2D~(u, z)/Be is tabulated as a 
function of u, where 

(2k TelVTelN 

is the ratio of the electron mean free path to temperature scale length and A is the 
number of particles in a Debye sphere. We note that De(u, z)/Be is a function of u 
only and that this quantity increases rapidly with u. In Figure 1, we plot Be as a 
function of log Te for Dupree's transition-region model. 

Since departures from Maxwellian are large when ]lxDe(u, z)l-> 1, we define a 
critical energy (u 2) such that ]De(Uc, Z) I ~ 1. In Figure 2 we plot u 2 as a function of 
log T throughout the transition region for Dupree's model. We find that, where the 
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Fig. 1. Ratio of electron mean  free path to Fig. 2. Critical energies at which the first order 
temperature  scale length for thermal  electrons in electron distribution function equal~ the 

the solar transition region. Maxwellian. 

temperature gradient is steepest (T -105 .2  K), substantial deviations from Max- 
wellian exist at energies greater than or equal to approximately 6kT. We will show 
that this result has important implications for ionization equilibrium and heat flux 
calculations. 

A similar analysis can be carried out for the protons given the first order 
distribution function computed by Roussel-Dupr4 (1979). In Figure 3, we plot the 
critical energy (u 2) at which [Di(uc, z)l = 1 as a function of proton temperature,  
assumed to equal the electron temperature.  We find that, where the temperature 
gradient is steepest (T - 105.2 K), substantial deviations from Maxwellian exist again 
at energies greater than or approximately equal to 6kT. We now ask in what way we 
may expect these distribution functions to differ from a Maxwellian. 

B. H I G H  E N E R G Y  T AIL  

Consider a plane-parallel layer of gas, with z as the vertical coordinate, composed of 
field particles having a Maxwellian distribution locally with temperature,  T r, and 
density, n r, each varying as a function of z according to Dupree 's  model for the 
transition region. We now inject test particles with velocity, v, parallel to the 
z-direction and determine the rate at which the test particle's velocity and kinetic 
energy change as a result of encounters with field particles. From these rates, we then 
obtain the time, t/9, for a test particle to undergo a 90 ~ deflection and the time, tE, for a 
test particle to thermalize to the local field particle temperature.  This problem was 
worked out by Spitzer (1962, cf. his page 132). 
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Fig. 3. first Fig. 4. Critical energies for 90 ~ deflection 

order distribution function equals and thermalizat ion of electrons. 

the Maxwellian. 

Given that the field particles have a non-uniform temperature in the z-direction, 
we can define another time scale; namely, the time it takes for a test particle with 
velocity, v, to travel a temperature scale length. We have 

1 1 dTr~ -1 
tF = v-~ ] (--~r --d~z ] . (4) 

Examination of the energy dependence of the ratios to/tF and tz/tF reveals that 
both ratios increase rapidly with test particle energy. It is possible then to define 

2 2 (uc)E, above critical test particle energies, (Uc)D and which tD/tv and tE/tv, respec- 
tively, become greater than one. In Figure 4, the solid and dashed curves represent 

(uc)/9 and a function of log T through the transition region with plots of 2 2 (uc)z, as 
electrons as the test particles. We find that, where the temperature gradient is 
steepest, the deflection time becomes on the same order as a time of flight (tF) for 
energies greater than or approximately equal t o l0  kT. Since test electrons with 

U 2 energies greater than ( c)D can penetrate a temperature scale length without 
undergoing a 90 ~ deflection, high energy electrons from the corona can penetrate 
quite far into the transition region while the colder test electrons from the chromo- 
sphere will not penetrate as far. This leads to an anisotropic velocity distribution 
function. 

Similarly, we find that tE/tF--> 1 for energies >~5kT at T = 105.2 and since test 
electrons with energy greater than (u~)E will maintain their energy over scales 
greater than a temperature  scale length, high energy electrons from the corona will 
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populate the high energy tail of the field electron distribution function. Thus, the final 
self-consistent distribution functions will possess high energy tails which are highly 

anisotropic. 
2 2 and (Uc)E for The values of (uc)o proton test particles are plotted as functions of 

log T in Figure 5. The protons clearly will also form non-Maxwellian distribution 
functions, just as the electrons. An interesting difference, however, stems from the 
fact that for the most part electrons and protons do not exchange energy. A proton 
test particle may thermalize to a temperature which is completely different from the 
electron temperature.  This follows since tE(p--e coll is ions)-(mp/me)l /2tE (p--p 
collisions). 

The ions responsible for the EUV line emission present a different scenario. Since 
the ion abundances relative to the protons and electrons are quite small, and since 
their masses are much larger than the electron mass, they will interact primarily with 
protons. Furthermore,  the average charge of ions formed from 10 5 K to 106 K ranges 
from Z = 3 to Z = 10 and since to and tE are both inversely proportional to Z 2, the 
ions will usually isotropize to nearly Maxwellian distribution functions and ther- 
realize to the proton temperature.  To illustrate this result, we have carried out an 
analysis on Si IV similar to that carried out for the electrons. In Figure 6, we plot 

2 2 (uc)o and (Uc)E vslog T, for Si IV and find that these critical energies are much 
larger than for the electrons and protons. Thus the ion distribution functions are 
nearly Maxwellian. An interesting consequence of these results is that EU V  line 
profiles will reflect the proton temperature but not necessarily the electron tempera-  
ture and will not reflect any asymmetries which might arise in either the electron or 
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TABLE I 
Fraction f of particles with energy above u 2 in a 

Maxwellian distribution 

2 u 1 - f  f 

1.00 (-4) 7.52 (-7) 1.00 
1.00 (-2) 7.48 (-4) 1.00 
1.00 (-1) 2.32 (-2) 9.77 (-1) 
5.00 (-1) 2.01 (-1) 7.99 (-1) 
1.00 4.28 (-1) 5.72 (-1) 
2.00 7.36 (-1) 2.64 (-1) 
4.00 9.54 (-1) 4.60 (-2) 
6.00 9.93 (-1) 6.85 (-3) 
8.00 9.99(-1) 1.07 (-3) 
1.00 (1) 1.00 1.62 (-4) 
5.00(1) 1.00 1.54 (-21) 
1.00 (2) 1.00 4.20 (-43) 

proton distribution function. We note, however,  that the latter conclusion applies 
only to the extent that we have neglected the first order  correction (to the zeroth 
order  Maxwellian distribution function) obtained from collision-dominated theory. 

Indeed, thermal  diffusion (a process which is manifested in the first order  ion 
distribution functions (cf., Roussel-Dupr6,  1979)) of the heavy ions clearly reflects 

the asymmetries  associated with the first order  electron and proton distribution 
functions. 

As a final note we emphasize that, while it is true that there will always exist 
particles with high enough energy to be collisionless in the transition region, the 
supply of such particles is limited by the ultimate source of energy, i.e., the solar 

corona. Thus, let us assume that the coronal electron distribution function is a 
Mawellian with t empera tu re  106 K, the fraction f of particles with energy greater  

than u 2 is listed in Table 1. We find that at T = 105 K, for example,  76% of coronal 
electrons have energy greater  than 6kT; however,  only72/o have energy greater  than 

, / 

50kT. The point is that the critical energies at whmh electrons become collisionless 
are sufficiently low through the upper  half of the transition region that a substantial 
number  of coronal electrons are collisionless through that region. As a result, large 
departures  f rom Maxwellian can be expected in the region f rom 105 to 106 K. 

3. Particle Orbits 

In the previous section, we showed that high speed test electrons, moving along the 
tempera ture  gradient in the transition region, could penetra te  a tempera ture  scale 
length without undergoing a 90 ~ deflection or losing a significant fraction of their 
initial energies. The analysis which brought  us to these conclusions, however,  was 
based only on a rather  simple minded comparison of appropriate  t ime scales. In this 
section, we shall develop these ideas on a more  quantitative basis. 
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We shall first discuss some properties of the 'dynamical-friction' force exerted on a 
test electron as it moves through a fully ionized gas. This force is taken from the 
Fokker-Planck collision operator (cf. Dreicer, 1959) and is given for a test electron 
of velocity v by the expression 

where 

0 ( m , +  me] f fi(v')dv' 
F ~  = meFe -~v ~t Z } \ m,  , j -~-~7~ , 

47re 4 In A 
/ ~ e =  2 , 

m e  

(5) 

fr(v) is the field particle velocity distribution function, the sum is over all field 
particles, and the integral over all velocity space. For the special case where the field 
particles have Maxwellian distribution functions and consist of electrons and 
protons, Equation (5) reduces to 

FD = S - ~  (2A (u) +A(Bpu)) v, (6) 
u /) 

where 

Ec = n(me/e)l'eae, 
,/,g/p. 1/2 

a e  ~ 

A(u)  = ~b(u) - uq~'(u) , 
It 

2 
4~(u) = ~--~ f exp ( - t  2) dt ,  

0 

and n and T are the field particle density and temperature respectively. In Table II 
we list the absolute value of FD, normalized to eEc, as a function of u. We see that the 
dynamical friction increases sharply up to the proton thermal speed (/3pu = 1) and 
then decreases for larger u. For high speed test particles (i.e., u >> 1) IFDI decreases as 
1/u  2 while for those moving at very low speeds (i.e.,/3pu << 1) ]Fo[ becomes propor- 
tional to u. This behavior of the dynamical friction force is responsible for runaway 
effects associated with high speed particles and the drifting of thermal particles in a 
plasma subject to an externally applied field. For a gas with a temperature gradient, 
we will find that we can describe velocity space in terms of a collision-dominated part 
populated by particles which are cooled by dynamical friction as they move from 
higher temperatures to lower temperatures; and a collisionless regime populated by 
high speed test particles which can penetrate down through a temperature scale 
length without cooling substantially. An electric field applied along the temperature 
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TABLE II 

The dynamical friction force for electrons 

u Fo/eEc 

0.0 0.00 
1.0 ( -4)  5.90 
1.0 (-2)  5.36 (2) 
2.0 (-2)  7.83 (2) 
2.3 ( -2)  7.84 (2) 
3.0 (-2) 7.37 (2) 
1.0 (-1) 1.00 (2) 
2.0(-1) 2.53(1) 
3.0 (-1)  1.15 (1) 
5.0 ( -1)  4.65 
1.0 1.86 
1.4 t.26 
1.8 8.70(-1) 
2.0 7.27 (-1)  
2.5 4.80 (-1) 
3.0 3.33 (-1)  
4.0 1.88 (-1)  
5.0 1.20 (-1) 

gradient will have the effect of accelerating electrons into the collisionless regime, 
leading to an increase in the population of the high energy tail. We will illustrate 
these effects more clearly by computing the orbits of high speed electrons in velocity 
space, with an analysis similar to that used by Dreicer (1960). 

Consider a single test electron with velocity v moving through a plane-parallel 
layer composed of electrons and protons whose distribution functions are Max- 
wellian and described by a density, n, and temperature, T. For generality we include 
the effects of an externally applied electric field and allow the temperature of the field 
particles to vary along the vertical coordinate, z, of the layer but, for simplicity, we 
assume that the temperature gradient and density remain constant. Under these 
conditions, the Langevin equation for the change in velocity v is (cf. Chandrasekhar, 
1943 for details) 

dv 3eE~ v - - +  7-~= e E + A ( t ) .  (7) 
dt meae me 

In this equation, the acceleration due to particle-particle interactions is separated 
into a time-averaged part, the dynamical friction, and a part, A(t), describing 
fluctuations about the average. The second terni on the left hand side of Equation (7) 
is simply the high velocity limit of the dynamical friction. The parameter, t, 
represents the time as we follow the test electron along its trajectory through the gas, 
and is related to the coordinate, z, by the equation 

dz 
dt vz. (8) 
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Ignoring the velocity fluctuations produced by the acceleration A(t) (see Dreicer, 
1960) and combining Equations (7) and (8) we can write the Langevin equation as 

d T d v  3eEc v - e E  
>V~zz - + -  3 (9) dT aeme V me 

We can reduce Equation (9) into two component equations which in non-dimen- 
sional form are 

where 

) /z dO u 2 +~* ' 

d/z  t$ ( 1 - / z  2) 

~ 7 f f  = 2 u ~  x 2 ' 

(lO) 

(11) 

x2= u2/u 2, u 2 = 3EO/E 

eEL ( 1 dTo'~ -1 
0 =T/To, 8 - k T  o, L =  To d z }  ' 

and a subscript zero indicates that the parameter is to be evaluated at the initial 
position of the test electron. The flow lines for fast electrons in velocity space in any 
plane containing E, are obtained from Equations (10) and (11), 

d x  2 2 
d/~ - (1 _ / 2 )  (1 +/~x2). (12) 

The solution to this equation is 

where 

2 - 2  K 
= +1 x 1+/~ _ / . 2 ,  (13) 

K = ((1 +/x0)x~ +2)(1 - /*o) ,  

and Xo and/Xo are the values of x and/x at the initial position of the test electron. Note 
that Equation (13) generates essentially the same flow lines as obtained by Dreicer. 

The dynamical friction acts to accelerate test particles in a direction which always 
opposes their motion. This arises simply from the fact that the field particles are 
distributed symmetrically in velocity space. For the special case E = 0 the flow lines 
are generated by the equation /x = constant so that, in velocity space, the test 
particles simply follow straight line orbits leading into the origin. The /elevant 
problem for a test particle moving through a finite layer is to find its final velocity 
after it leaves the layer, given its initial velocity u0. By computing the work done by 
the dynamical friction on a test electron as it moves through the layer and given its 
initial velocity, we can derive its final velocity after it leaves the layer. As shown in 



252 ROBERT ROUSSEL-DUPRIE 

Appendix  1, this is given in general by the equation 

( 26c0r--0~ (14) 
= 1 / z  ' 

where uf and Uo are the final and initial'speeds normalized to the the rmal  speed at the 
top of the layer; 6c =--(eE~ is the work done (normalized to kTo) by the 
dynamical friction on a thermal electron (at To), which travels a tempera ture  scale 
length (L) along the tempera ture  gradient; 0o and 0 s are the initial and final 
temperatures  normalized to To. Equation (14) neglects the effect of deflections in 
slowing a beam of test particles. 

In Figure 7, we plot, on a vz vs vx graph the final velocities for test electrons 

injected into a given layer in the transition region (characterized by its critical speed, 
uc, computed  from Dupree ' s  model) for two initial energies, Uo 2 = 1.5u 2 and u 2 = 

2.0Uc2. * The circle in this plot represents the distribution of initial velocities, all with 

the same magnitude,  for test electrons injected at different angles to the tempera ture  
gradient. Note  that those particles with positive init ial /z-values are injected at the 

bot tom of the layer; while those with negat ive/z-values  are injected at the top. The 

straight lines are the particle flow lines which are drawn in to simplify the tracing of 
the particle trajectory f rom its initial velocity to its final velocity after it leaves the 

layer. Clearly, particles injected at large angles (small/z) to the tempera ture  gradient 
never  make  it out of the layer. These test electrons simply come to rest somewhere  in 
the layer itself.? On the other hand, those electrons moving along the tempera ture  
gradient have small changes in their initial speeds. Another  interesting effect is 

. . . .  ~=~.5 u~ 
- -  . = . u ~  

Fig. 7. Final velocities for test electrons injected into a given layer in the transition region for 
two initial energies. 

* The critical speed (uc) referred to here is that for a 90 ~ deflection (=(uc)o). 
t We note that a single test particle can never actually come to rest because of the effect of the velocity 
fluctuations, A (t), which we ignored in this analysis. Furthermore, remember that our analysis only applies 
as long as the-test particle speed is larger than the local thermal speed. 
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associated with the/z dependence of the final speeds. We see that the relative change 
in particle energies does not vary substantially with/z until a critical value is reached, 
beyond which the test particle decelerates rapidly. For higher initial energies, this 
critical/z-value decreases. Thus, even if a test particle undergoes fluctuations in 
velocity space about its mean orbit, it does not slow substantially until it reaches large 
angles to the temperature gradient. 

The effect of the statistical fluctuations in velocity, A(t), which was not included in 
this analysis, is to smear out the particle orbits in velocity space. In other words, a 
single test electron can jump from one flow line to another in the course of its motion 
through a given layer. The degree to which a particle is deflected to and from various 
orbits depends on its speed. The larger the particle speed, the smaller the fluctua- 
tions. Clearly, those electrons moving along the temperature gradient have the 
greatest chance of escaping a given layer without a substantial change in their initial 
speeds or directions. Those traveling at large angles to the temperature gradient, will 
slow because of their longer path lengths and will also deflect more easily to different 
flow lines. Some will be deflected into a flow line directed along the temperature 
gradient; however, if their speeds have decreased substantially by this time, they can 
be easily deflected back out again before escaping the layer. These particles become 
trapped in the thermal pool. Thus, the dynamical friction and A(t) combine to 
thermalize and isotropize the distribution of test particles to the field particle 
distribution. However, they become ineffective for particles at high speeds and 
traveling at small angles with respect to the temperature gradient. This is what leads 
to anisotropies and a high energy tail in velocity space for a plasma with a 
temperature gradient. We can conclude that velocity space can be broken up into a 
thermal part and a collisionless part populated by high energy electrons which stream 
through a temperature scale length without altering their energies substantially. 

A similar analysis can be carried out for the case where an electric field is applied 
along the temperature gradient. Combining Equations (11) and (13), we obtain a 
transcendental equation for the final/z-value of the test electron; namely, 

K 2 , [ I+/Z 1-/zo__)=x~(l+ ~___~(Oo_Or)) 
1--/Z 2 I+/Z m [ ] - - ~ x - l t / z 0 /  UbXo " 

(15) 

From this equation and the particle trajectories (Equation (13)), we obtain the final 
test particle velocites. Equation (15) was solved numerically with an iteration 
scheme. Our results are displayed in Figures 8-11 with a format similar to that used 
for zero electric field. In this case, however, the results depend on both the value of 
the critical speed, uc, for a given layer in the transition region and on/3 = E/Ec. In 
Figure 8, the final velocities are associated with initial energies of U2o = 1.5u 2 and 

2 u 2 = 2.0u~ where u~ is the minimum value of (Uc)D plotted in Figure 4 and/3 was 
taken to be 0.5. In Figure 9, the initial velocities are the same as in Figure 8, however, 
the value of/3 was changed to 1.0. We see that the larger the initial velocities the 
smaller the final relative change in velocities. In addition, if the electric field is 
increased the relative change in velocities increases. In Figures 10 and 11, we plot the 
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Final velocities for test electrons injected into a given layer in the transition region with 
an electric field. 

final velocities for  a value of u 2 equal to twice the min imum value of 2 (Uc)O for  the 
transit ion region and for  the same values of/~. Compar ing  these two sets of  figures, 

we find that  the accelerat ion due to the electric field increases relative to that  due to 

the dynamical  friction as we move  to higher  speeds�9 This arises f rom the fact that  the 
dynamical  friction force falls off as 1/u 2 while the electric field is independen t  of  

velocity. 
The  most  interesting features  of  these plots are the particle orbits. As  poin ted  out  

by Dreicer  (1960), there  exists a critical surface which separates  velocity space into a 
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region where dynamical friction dominates and a part where the electric field 
dominates. The minimum distance of this surface from the origin occurs at ~ = -1  
and is given as u = Ub where u~ = 3E~/E. The larger the electric field, the smaller the 
particle speed needed for the electric field to dominate over dynamical friction. Thus 
the region in velocity space which is effectively collisionless becomes larger with 
increasing E. We also observe that this critical speed increases as/z decreases. What 
is more important, however, is the behavior of the final velocities as a function of/~. 
We find that the relative change in velocities remains approximately constant up to a 
critical angle, below which a test particle experiences larger changes in velocity. 
Indeed, the latter region is quite narrow in/z and becomes narrower the larger the 
initial speed of the test particles. 

Finally, the effect of an electric field is essentially to accelerate test particles into 
the collisionless regime. If the electric field points along the temperature gradient, 
then the asymmetry produced by the temperature gradient is enhanced i.e., the 
number of high energy electrons moving down the temperature gradient is increased. 
The opposite applies if the electric field points in a direction opposite to the 
temperature gradient. Furthermore, the electric field introduces a critical surface 
within which a particle's motion is dominated by dynamical friction while outside of 
which the motion is dominated by the electric field. 

4. Estimate of the Electron Distribution Function 

We have shown that the electron distribution function for velocities parallel or 
anti-parallel to a temperature gradient could be divided into a collision-dominated 
regime and a collisionless regime. If the collision-dominated part of the distribution 
function can be represented by a Maxwellian, then for all vx, vy, and for a steady state 
with a temperature gradient in the z-direction, 

fe(V~,vy, v ~ , z ) = n o ~ ]  exp -2---~o(v~ +v~ +v~) (16) 

for Vz >- - vzc, while for v~ -< v~c 

me F -2-2---~ome 2 2]_ fe(IJx,  l.)y, 13z, Z)  = - -  frail  (/-)z, Z ) ,  exp[ (vx + v y) 
2 rck To 

where Vzc is the 'critical' speed beyond which the electrons become collisionless. We 
note from Equation (16) that the tail is attached only at negative z-velocities. This 
stems from the argument that there are very few collisionless test particles originat- 
ing from the lower temperature and very few high energy particles, from high 
temperatures, deflected back up the temperature gradient. 

Our objective, then, is to estimate the velocity dependence of the tail (/ta,[vz, z]) of 
the electron distribution function throughout the transition region, given the density 
and temperature profiles from Dupree's model. We note first that the tail at a 
temperature, T, must ultimately originate from the thermal part of distribution 
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functions at higher temperatures.* As a result, the contribution to the tail at 
temperature, T, and velocity, Vz, from the distribution function at T + A T  and 
velocity vz is given by 

( me )_)1/2 
ftai](V~, T) = n ( T + A T )  21rk (T+AT  x 

2 [ me z ] 
•  2 ~ r k ( T + A T ) j - v ~ ( T + A T ) < - v ~ < - - V z ~ ( T ) ,  

(17) 

where the upper limit on Vz arises from the fact that particles with larger velocities 
are collision dominated (not part of the tail) and the lower limit is a result of the fact 
that particles at lower velocities are also collisionless at T + A T  and therefore 
originated ultimately from the thermal part of the distribution functions with 
temperatures greater than T + A T .  If we take the limit of Equation (17) as AT 
approaches zero, we see that each temperature, T, contributes, at a single velocity 
v~ = v~c(T), an amount given by a Maxwellian evaluated at v~, to the tail at lower 
temperatures. Therefore, the tail at temperature, T, is given in general by 

( rne  l/2exp[ 1 
ft~,~(Vz, T) = n(T') k 2--~k--~J - 2-k-~J (18) 

for v~ <- -Vzc(T) and where T' is a function of v~, derived from the equation 

v~c(T')=Vz. (19) 

The form for the tail is complete, given the critical speed as a function of 
temperature. In Section 2, we estimated the critical energies beyond which electrons 
become collisionless from ratios of appropriate time scales and from collision- 
dominated theory. Three sets of critical energies were obtained. (u~)o (90 ~ 
deflection), 2 2 (Uc)E (thermalization) and uc (collision-dominated theory). Since the 
latter is based on a precise mathematical solution of the Boltzmann equation, we feel 
that u 2 gives a good indication for the location of the tail in velocity space. However, 

2 uc was also derived assuming that the first order distribution function f(1) was equal 
t(0) in magnitude to j . Since strong departures from Maxwellian will occur even if f(1) is 

one-tenth of f(o), the critical energy should be chosen to be less than uP. We have 
chosen to work with (U2)E which is always less than u 2 throughout the transition 
region. This choice is somewhat arbitrary and should be considered a lower limit on 
the critical energy since electrons with energy less than (u~)E are thermalized. We 
will also present results for a critical energy equal to (0.4) 1/2 (U~)D. This particular 
choice arises in connection with the calculations of particle orbits presented in 
Section 3 (see also Roussel-Dupr6, 1979, p. 97) and should be considered an upper 
limit to the critical energy. 

* This conclusion s tems primarily from the fact that  the  corona is isothermal and that the  tail is populated 
by collisionless electrons which stream to lower energies without changing their initial energies. 
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Given the results of Section 2 for the critical energies (Uc2)~, we have 

1 2 n l n A  "dT ''-1~1/3 
U2zc=3"28x 0 [ - - - ~ ( ~ z )  l " (20) 

Combining Equations (18), (19), and (20) and assuming that the gas pressure and the 
quantity q' = T '5/2 d T ' / d h  are constant, we obtain 

. . 1 / 2 _  2 .  9 / 7  
[ me ~ [ blzc~ r 2 / 7  1 2 / 7 1  (21) 

f ta i l ( /Az,  T 0 ) = / ~ 0 ~ k 2 ~ 0  ) ~k-~-z) e x p t - u z  u=c 1 

for Uz <- -Uzo 
Equation (21) gives the final form for the tail of the distribution function through 

the transition region. In Figure 12, we plot the ratio of ft,i~(uz, To) to a Maxwellian 
evaluated at uz, as a function of 2 2 uz/uz~ for several values of 2 u z~. We find that this 
ratio increases rapidly with velocity i.e., the tail is overpopulated compared to a 
Maxwellian. 

Finally, implicit to the derivation of the velocity dependence of the tail was the 
assumption that the collisionless particles gain or lose only a small fraction of their 
initial energy over the extent of the transition region as a result of work done on them 
by external forces such as gravity. This is an excellent approximation since the 
transition region is so thin and since these collisionless particles have very high 
energies. In addition, the assumption that q' is constant is also a very good 
approximation for the transition region since most, if not all of the collisionless 
particles originate from the region T = 1052-106z K, where T 5'2 d T / d h  is indeed a 
constant. 

I I I I 

o 
dr ~ , 

%~ 

1.4 1.8 2.2 2.6 3.0 3.4 

Fig. 12. Ratio of the electron high energy tail to a Maxwellian. 
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5. Moments  of  the Electron Distribution Function 

In deriving Equation (18) we assumed that the thermal part of the distribution 
function could be approximated by a Maxwellian. In fact, the actual distribution 
function is the sum of a Maxwellian plus small correction terms which result from 
nonuniformities in the density, temperature and mean flow of the gas. If the 
correction terms are small they may be computed from a perturbation analysis - the 
Chapman-Enskog theory. We found in Section 2 that the first order correction term 
computed by Spitzer and Harm (1953) for electrons in a nonuniform gas, is small for 
electron energies less than a critical energy, u 2, plotted as a function of temperature 
in the transition region in Figure 2. Since the correction term is small compared to a 
Maxwellian for speeds defined to be in the thermal part of the distribution function, 
we were justified in our approximation of the previous section. However,  we cannot 
completely ignore the contribution of the first order term to the overall distribution 
function since its nonuniform nature in velocity space contributes to the moments 
which determine the mean gas flow and heat flux at a given height in the transition 
region. Since perturbation theory breaks down beyond the critical speed, uc, this 
correction term can only apply to the collision dominated part of the distribution 
function and, therefore, does not affect the tail. In fact, the tail was computed 
because collision dominated theory broke down at high velocities. The total electron 
distribution function for all vx and Vy becomes 

fe(l.)x, /-)y, /)z, Z ) t , (O) /  (1) +f~ (v~, v .  Vz, fe [~)x, Uy, Yz, Z) Z) 

for Vz >- -Vzc and (22) 

fe(Vx, Vy, Vz, Z) ~r = fe  [/)x, Uy, Z)J'Ctail(/)z, Z) 

- e(1) is taken from Spitzer and H/irm (1953) for Vz < -v~c, where f~e ~ is a Maxwellian: . r e  

and frail is given by Equation (21). 
The electron density, mean flow temperature,  and heat flux in the transition region 

are defined in terms of the electron distribution function as: 

Density: n,(z)  = ~ dv re(V, Z). 

Mean flow: ~e(Z) = I dv v/e(v, z ) .  

me I Temperature:  T(z )  =~--~ dv(v-~Ce)2 fe(V, Z).  

Heat  flux: qe(Z) = lme I d v ( v - ~ ) 2 v f ~  (v, z ) .  
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From Equation (19), we then find: 

oo 

n~(z )=no 5( l+d, (u~))+--~-  tl 2 d , 

ttc 

- n o  4 ( -u~)  t:z~(z) = [---~-- h(uc) 4 exp 
n~ t 3 4 ~  2~/~ x 

2 2 2 ] x(7 exp (u ~ )u~E3(u ~) - 1) , 

T~(z) no To(4-3A(u~)) 
//e 

' ~ [ 2 k T ~  - ~ 1 5 ( u c )  
+ 

7 e x p ( - u ~ ) / 3 u ~  27 6 12 12~] 
+ , / ;  

(23) 

(24) 

(25) 

(26) 

where ~ is the error function; E3 is the third exponential integral; Uc is the critical 
speed at which the tail is attached; and Ge is the mean flow of the electron gas (which 
has a z-component only) normalized to the local temperature, To, and 1,(x) is 
defined by 

x 

I , ( x )  = f t" exp ( - t2)D,( t )  dt .  

o 

We note that ne and T~ reduce to no and To as uc approaches infinity. This must be the 
case since the distribution function then reduces to a Maxwellian plus a correction 
term which does not contribute to either of these moments ( f ) :~ -~) .  As uc 
approaches infinity the mean flow and heat flux also reduce to their values predicted 
from collision dominated theory. 

We can evaluate the effect which the tail of the distribution function has on the 
various moments discussed above by comparing the actual moments to the values 
predicted by collision dominated theory (i.e., u~ -* oo). In Table III, we list values for 
( nr - no) / no, ( Te - To)/To and ( q~ - qo) / qo as a function of temperaturein the transition 
region. We find that the tail has very little effect on the temperature and density of the 
gas as predicted from collision-dominated theory. In other words, no and To 
represent the total density and mean kinetic energy of the gas to a high degree of 
accuracy. On the other hand, the heat flux is enhanced from that predicted by 
collision dominated theory by as much as thirty percent where the temperature 
gradient is steepest. 

In the case of the mean flow for the electrons, we cannot define a quantity 
( G r  G0)/Go since, assuming that the ions and protons are effectively stationary 
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TABLE III 

Moments of the electron distribution functions* 

Log T n - n o  T -  To q~ - qo E -  Eo E 

no To qo Eo Ec 

4.7 7.56 (-11) 4.4 (-9) -1.00 (-5) 2.03 (-6) 1.31 (-4) 
4.8 1.88 (-6) 7.2 (-5) -5.11 (-3) -1.52 (-3) 7.89 (-4) 
5.0 4.09 (-4) 1.2 (-2) 1.21 (-1) 1.20 (-2) 4.82 (-3) 
5.2 1.94 (-3) 5.1 (-2) 2.83 (-1) 3.50 (-3) 1.12 (-2) 
5.4 1.31 (-3) 3.6 (-2) 2.92 (-1) 1.38 (-2) 8.87 (-3) 
5.6 7.37 (-4) 2.1 (-2) 1.69 (-1) 1.44 (-2) 6.52 (-3) 
5.8 4.09 (-4) 1.2 (-2) 8.59 (-2) 5.98 (-4) 5.02 (-3) 
6.0 2.05 (-4) 6.2 (-3) 4.73 (-2) -2.29 (-3) 3.66 (-3) 
6.2 1.13 (-4) 3.5 (-3) 1.89 (-2) 3.32 (-3) 2.87(-3) 

* The subscript (0) refers to moments computed from collision dominated theory. Those 
without the subscript are computed with the effect of the tail included. 

relative to the electrons and that no net charge enters or leaves the transition region, 

the electric current must equal zero o r  Uze and ti~p equal zero. In the presence of a 
temperature gradient, zero net current is maintained by a self-consistent electric field 

which drives cold electrons up the temperature gradient to compensate for the flow 

of hot electrons down the temperature gradient. We can compute the electric field, E, 

needed to maintain zero net current by setting Equation (24) to zero. In the collision 

dominated case (uc ~ oe), where the mean ionic charge (5)  is equal to one, this 

electric field is given by 

kdT 
Uo = -0 .703  - - -  

e dz " 

In Table III, we list values for (E-Eo)/Eo as a function of temperature in the 

transition region. We see that the tail does not affect the value of the collision 
dominated electric field to any significant degree. We also list in Table IV, values for 

E/Ec as a function of temperature; we find that the self-consistent electric field is 

small compared to the dynamical friction. Correspondingly, it is still a good approx- 

imation to assume that the high energy particles streaming down the temperature 

gradient do not alter their energies substantially because of acceleration or 

deceleration due to an external force (see the regults of Section 4). 
Because of the difficulty in determining a precise value for the critical energy we 

have presented calculations for minimum and maximum values. The results present- 
ed in Table IV correspond to a minimum value for the location of the tail in velocity 
space. In Table IV, we present values for (qe - - q o ) / q o  computed with the maximum 

critical energy given by (0.4)1/2(u~)0. We see that these values are all negative, 

meaning that collision-dominated theory predicts a larger heat flux than the dis- 
tribution function with a tail; however, this is not physically valid since particles 
cannot transport energy any faster than if they stream freely as in the case of the high 
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TABLE IV 

Comparison of electron heat flux cal- 
culations* 

Log T Uz~ qe - -  q o  

qo 

4.7 66 0 
4.6 27 -7.70 (-7) 
5.0 11 -3.45 (-2) 
5.2 7.0 -1.80 (-1) 
5.4 8.2 -1.02 (-1) 
5.6 9.5 -7.04 (-2) 
5.8 11 -3.51 (-2) 
6.0 13 -1.41 (-2) 
6.2 14 -5.45 (-3) 

* qe is the heat  flux computed with the effect 
of the tail included while q0 is the collision 
dominated value. 

energy tail. These results indicate that if the critical energies (used to obtain the 
results in Table IV) at which the tail is attached are correct then collision-dominated 
theory tends to overest imate the electron heat flux. This is not surprising since as 
shown in Section 2, collision-dominated theory breaks down beyond a critical energy 

plotted for the transition region in Figure 2. On the other hand, the results obtained 
2 with the critical energy for the tail given by u~ = (Uc)e, give heat fluxes which are 

greater  than predicted by collision-dominated theory. We can conclude that the 
actual heat flux is quite sensitive to the location of the tail in velocity space. These 

results also suggest that the critical energy for the location of the tail cannot exceed 
the critical energy beyond which collision-dominated theory breaks down.-~ We note 

that the latter energies are closer to the minimum critical energies used in our 
(Uc)E, are calculations. Indeed, as already suggested, the minimum critical energies, 2 

probably a bet ter  estimate of the location of the high energy tails. An exact solution 

to this problem would require solving the Bol tzmann-Fokker -P lanck  equation 

numerically - a task of enormous proportions.  

6. Summary 

In Section 2 of this paper,  we found that, based on a comparison of appropriate  t ime 
scales, the electron and proton distribution functions were non-Maxwellian in the 
solar transition region in the sense that a high energy tail composed of hot electrons 
and protons streaming down from the corona would result. We also found that this 
anisotropy in the proton and electron distribution functions would not be reflected 
by the ions since their higher charge causes them to be collision-dominated and 

? This suggestion s tems from the fact that we have incorporated the first order distribution function, f(1), 
in our total distribution function. 
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results in nearly Maxwellian distribution functions. In addition, we pointed out that 
the proton and electron temperatures need not be equal through the transition 
region and that the ions would reflect the proton temperature.  If the proton 
temperature differs from the electron temperature in the corona then this condition 
would persist through the transition region. In a steady state, however, the latter 
condition would necessitate a source or sink of energy for one or the other species in 
the corona. We suggest that this would represent an interesting line for future 
research since observations show line widths which are much larger than the thermal 
widths expected from electron temperatures derived from ionization equilibrium 
calculations. 

In Section 3, we computed velocity space orbits for test electrons moving through a 
layer composed of field particles with Maxwellian distribution functions charac- 
terized by a temperature which varies through the layer. In addition, we computed 
the final speeds for these test electrons after they leave a layer whose depth is defined 
by a temperature  scale height. The results were obtained from the Langevin equation 
which includes the effects of a dynamical friction force and an externally applied field. 
For the case of zero electric field, the velocity space orbits are straight lines (given by 
/~ = constant) leading into the origin in velocity space. In computing the final energies 
for the test electrons, we found that an electron's energy does not change substan- 
tially over a temperature scale length for energies greater than a critical energy and 
that this result applies over a broad range of/~-values up to a critical value which is a 
function of the particle's energy. When an external electric field was included in our 
calculations, we found its effect was essentially to accelerate test electrons into the 
collisionless regime. If the electric field points along the temperature gradient, then the 
asymmetry produced by the temperature  gradient is enhanced i.e., the number of high 
energy electrons moving down the temperature gradient is increased. The opposite 
applies if the electric field points down the temperature gradient. Furthermore,  as 
shown by Dreicer (1960), the electric field introduces a critical surface in velocity 
space. If a particle's energy is less than the energy along this surface, then the 
dynamical dominates the particle's motion. If it is greater, then the particle's motion 
is dominated by the electric field. 

The main conclusion of Sect ion 3 was that, for a plasma with a temperature 
gradient, velocity space can be broken up into a thermal part, and a collisionless part 
populated by high energy electrons which stream through a temperature scale length 
without altering their energies substantially. The net result is that the electron 
distribution functions are characterized by high energy tails. In Section 4 we 
estimated .the magnitude of these tails, for conditions appropriate to the transition 
region, and found that they were strongly over-populated relative to a MaxweUian. 

In Section 5, we used the results of Section 4 to recompute various moments of the 
electron distribution functions. We found that the tail had a negligible effect on the 
total local density of electrons, the electron temperature,  or on the critical self- 
consistent electric field needed to maintain zero net current. On the other hand, the 
effect of the high energy tail is to enhance the electron heat flux over that computed 
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from collision-dominated theory by a maximum of 30% in the temperature range 
from 105"2-105.4 K. We also found, however, that these results are sensitive to the 

location of the high energy tail in velocity space and that detailed calculations, which 

would involve solving the Bol tzmann-Fokker-Planck equation numerically, are 
necessary in order to determine the exact magnitude of these effects. Nevertheless, 
we feel that the minimum critical energies represent a good approximation for the 
locations of the tails and that the results obtained with these critical energies are 
reasonable approximations for the enhancement in heat flux. 

The enhancement in the heat flux, which we computed for Dupree 's  model will not 
have a serious effect on the energy budget of the corona and the transition region. 
However,  it is important to realize that the computed enhancement is sensitive to the 
location of the critical energy. Indeed, the increase in heat flux relative to that 
computed from collision-dominated theory may be significant for regions which have 
lower densities and/or  larger temperature gradients (i.e., lower critical energies) 
than obtained from Dupree 's  m o d e ~ A  similar analysis for coronal holes and active 
regions, for example, may yield interesting results. 
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